Of mice and men: Dissecting the interaction between Listeria monocytogenes Internalin A and E-cadherin
نویسندگان
چکیده
We report a study of the interaction between internalin A (inlA) and human or murine E-cadherin (Ecad). inlA is used by Listeria monocytogenes to internalize itself into host cell, but the bacterium is unable to invade murine cells, which has been attributed to the difference in sequence between hEcad and mEcad. Using molecular dynamics simulations, MM/GBSA free energy calculations, hydrogen bond analysis, water characterization and umbrella sampling, we provide a complete atomistic picture of the binding between inlA and Ecad. We dissect key residues in the protein-protein interface and analyze the energetics using MM/GBSA. From this analysis it is clear that the binding of inlA-mEcad is weaker than inlA-hEcad, on par with the experimentally observed inability of inlA to bind to mEcad. However, extended MD simulations of 200 ns in length show no destabilization of the inlA-mEcad complex and the estimation of the potential of mean force (PMF) using umbrella sampling corroborates this conclusion. The binding strength computed from the PMFs show no significant difference between the two protein complexes. Hence, our study suggests that the inability of L. monocytogenes to invade murine cells cannot be explained by processes at the nanosecond to sub-microsecond time scale probed by the simulations performed here.
منابع مشابه
A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier.
Listeria monocytogenes is responsible for severe food-borne infections, but the mechanisms by which bacteria cross the intestinal barrier are unknown. Listeria monocytogenes expresses a surface protein, internalin, that interacts with a host receptor, E-cadherin, to promote entry into human epithelial cells. Murine E-cadherin, in contrast to guinea pig E-cadherin, does not interact with interna...
متن کاملRole of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-beta-cyclodextrin rever...
متن کاملStructure of Internalin, a Major Invasion Protein of Listeria monocytogenes, in Complex with Its Human Receptor E-Cadherin
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex ...
متن کاملMurinization of Internalin Extends Its Receptor Repertoire, Altering Listeria monocytogenes Cell Tropism and Host Responses
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is s...
متن کاملListeria monocytogenes Invades the Epithelial Junctions at Sites of Cell Extrusion
Listeria monocytogenes causes invasive disease by crossing the intestinal epithelial barrier. This process depends on the interaction between the bacterial surface protein Internalin A and the host protein E-cadherin, located below the epithelial tight junctions at the lateral cell-to-cell contacts. We used polarized MDCK cells as a model epithelium to determine how L. monocytogenes breaches th...
متن کامل